If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+9y-16=0
a = 1; b = 9; c = -16;
Δ = b2-4ac
Δ = 92-4·1·(-16)
Δ = 145
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{145}}{2*1}=\frac{-9-\sqrt{145}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{145}}{2*1}=\frac{-9+\sqrt{145}}{2} $
| 3x+45=7x-7 | | 13=14f+1 | | 3(x+4)-15=5x-17 | | 5x+1-4x=-12 | | 6x+3+x=2+x+7+7x | | 3q-5=10 | | 3q–5=1 | | 51x-68=17(3x-4) | | -112=8(p-8) | | 2(6-x)=6x+36 | | 8+x/2=-12* | | 3^x+3^(x-1)+3^(x-2)=13 | | F(5)=2x+2÷3 | | C=38.24+25x | | 2s–1=7 | | 5y-2=62 | | 8(u+8)8u=8 | | 2x+16=1+5x | | -2x=8; | | j3+ 9= 12 | | 2(3t-6)=3t-9 | | 85=w-20 | | 11x-1=6x-5+6x-5 | | 1+3s=7 | | 13m=-12 | | 8=3(b-5)+11 | | (5x-7)(5x+1)=0 | | 2(x+3)+12=10 | | 30b=-10 | | y/12+3=-9 | | 10=2b-4 | | 9/c2,c=31/2 |